Polynomials and Potential Theory for Gaussian Radial Basis Function Interpolation
نویسندگان
چکیده
منابع مشابه
Polynomials and Potential Theory for Gaussian Radial Basis Function Interpolation
Abstract. We explore a connection between Gaussian radial basis functions and polynomials. Using standard tools of potential theory, we find that these radial functions are susceptible to the Runge phenomenon, not only in the limit of increasingly flat functions, but also in the finite shape parameter case. We show that there exist interpolation node distributions that prevent such phenomena an...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملA new stable basis for radial basis function interpolation
It is well-known that radial basis function interpolants suffer of bad conditioning if the basis of translates is used. In the recent work [12], the authors gave a quite general way to build stable and orthonormal bases for the native space NΦ(Ω) associated to a kernel Φ on a domain Ω ⊂ Rs. The method is simply based on the factorization of the corresponding kernel matrix. Starting from that se...
متن کاملMultivariate Interpolation by Polynomials and Radial Basis Functions
In many cases, multivariate interpolation by smooth radial basis functions converges towards polynomial interpolants, when the basis functions are scaled to become “wide”. In particular, examples show that interpolation by scaled Gaussians seems to converge towards the de Boor/Ron “least” polynomial interpolant. The paper starts by providing sufficient criteria for the convergence of radial int...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2005
ISSN: 0036-1429,1095-7170
DOI: 10.1137/040610143